
Journal of Statistical Physics, Vol. 69, Nos. 5/6, 1992 

Frenkel-Kontorova Model with 
Toda Interactions 

Bin Lin 1 and Bambi H u  2 

Received March 3, 1992; final June 25, 1992 

We have studied the Frenkel-Kontorova (FK) model with Toda interactions. 
The phase diagram is found to be asymmetric due to the exponential form of the 
Toda interaction. The reflection symmetry observed in the standard FK model 
is broken here. The singularity spectrum and the generalized dimension are 
calculated and their dependence on the nonlinearity parameter is discussed. The 
critical exponents of the gap in the phonon spectrum, the correlation length, 
and the Peierls-Nabarro barrier are found to be the same as those in the 
standard FK model and are independent of the nonlinearity parameter. 

KEY.WORDS:  Frenkel-Kontorova model; Toda interaction; multifractal; 
breaking of analyticity; incommensurate. 

1, I N T R O D U C T I O N  

Commensurate-incommensurate phase transitions have been observed in 
spin- and charge-density waves, (1'2~ magnetic spirals, (3~ intercalation com- 
pounds, (4~ and quasicrystals. (5~ The Frenkel-Kontorova (FK) model (6) has 
been widely used to study such transitions. It is also used as a model for 
crystal dislocation (7~ and adsorbed epitaxial monolayers. (8) This simple 
one-dimensional model has been proven to be most suitable for the 
description of various phenomena arising from competing periodicities. The 
Hamiltonian associated with the FK model may be written as 

.)~ = ~i I~  (xi + t -- xi--,u)2 -}- ( 2 @  (1--  cos 2rcxi)l (1) 
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where xi denotes the position of the ith atom and # the length of the 
unperturbed spring. The second term is the external potential with strength 
k and period one. 

In the standard FK model (1), the interatomic forces are harmonic. 
While interactions in some systems can be well approximated by harmonic 
forces, there are many systems in which the interactions are far from being 
harmonic. In this paper we will study a generalized FK model with anhar- 
monic Toda interactions. (9'1~ The Toda interaction Wo(xi+~-xi) between 
two neighboring atoms is given by 

1 
m o ( x i + l - - X i ) = ~ [ e  -fl(Xi+l-xi # ) - - l ]~ -~ (X i+l - -X i - - ]~  ) ( 2 )  

where /~ is a nonlinearity parameter measuring the degree of anhar- 
monicity. When /~ tends to zero, the Toda interaction reverts to the har- 
monic form (standard FK model); as/? increases, the interaction becomes 
more and more nonlinear, and in the limit /~ ~ o% the Toda interaction 
becomes that of a hard rod: 

/ ~ 0 ,  

where r = xi+ 1 - xi. 

W o ( r )  -- ,  �89 - ~)' 

Wo(r) --+ oc if r </x 

Wo(r)--+O if r~># 

(3) 

If we consider an external cosine potential as in the standard FK 
model (1), the Hamiltonian for the generalized FK model with Toda 
interactions (2) can be written as 

1 [e p(~,+~-x~ ~ ) - 1 ]  

+ ~ ( x i + l - x , - # ) +  (1 - cos 2~x,) (4) 

Milchev and Mazzucchelli (1~ studied the effects of the misfit # on the 
soliton description of this model. They found that the soliton picture of 
the dislocations breaks down beyond some critical value of the misfit. The 
length and the density of anharmonic solitons depend in an essential way 
on both the sign and the magnitude of the misfit. They also discussed the 
dependence of the frequency spectrum on the misfit, the nonlinear 
parameter/~, and the external potential strength k. 

In this paper we will concentrate on the phase diagram, the multi- 
fractal properties, and the critical behaviors of some physical quantities. 



. 3 5  

"-2" 

Fig. 1. 

.30 

.25 

�9 2 0  

.15 

.10 

.05 

0 L 
0 

.13 

.12 

.11 

.10 

�9 0 9  

.08 

.07 

.06 

.05 

.04 

.03 

�9 02 

.01 

0 
0 

(a) 

~ =  10 

0.002 

1 .2 ,3 .4 .5 .6 ,7 .8 .9 1 ,0 

r 

. 1  . 2  . 3  , 4  . 5  . 6  . 7  . 8  . 9  1 , 0  

1" 

Toda interaction (a) Wo(r ) and (b) W(r) as a function of r = x i + l - x i  with # = 0 . 5  
and various//. 



1050 Lin and Hu 

We first rewrite the Hamiltonian (4) to rearrange the parameter g. In 
Eq. (4), # appears with the term (xi+l-xi) in the exponent. This will make 
the boundaries of the phase diagram an implicit function and the map 
dependent on #. Fortunately, we can rescale the Hamiltonian to avoid 
these difficulties. The new Hamiltonian .~, rescaled from ~o by a factor 
e -~", is given by 

= e ~"~o 

= ~i {~2 [e-eO~,+*-x"-e -~**] 

e-~" k ) 
+ ~ (x,+l-x,-lO+(~n)2(1-cos2nx,)} (5) 

where k =  e-~ko . In the rescaled form, the interaction W(r)=e-~Wo(r) 
decreases monotonically as a function of fl: 

---, o, W ( r )  ~ �89 - # )2  
(6) 

fl~oo, W(r)~O 

Figure 1 shows Wo(r ) and W(r) for several values of ft. In the follow- 
ing discussions we will use the rescaled Hamiltonian (5). The rest of this 
paper is organized as follows. The ground states and the phase diagrams 
will be discussed in Section 2. In Section 3 we study the devil's staircase, the 
singularity spectrum f i e ) ,  and the generalized dimension Dq. In Section 4 
we compute the critical exponents of the gap in the phonon spectrum, the 
correlation length, and the Peierls-Nabarro barrier. Section 5 contains a 
brief conclusion and discussion. 

2. G R O U N D  STATE A N D  P H A S E  D I A G R A M  

2.1. Ground  S t a t e  

Since the Toda interaction W(r) is a convex function, we can use the 
gradient method (11 13) to calculate the periodic ground states. Consider a 
commensurate structure with winding number co = p/q (the average atomic 
distance) defined by 

co= lira x i -xc  (7) 
i - - i ' ~ o o  i--i' 

The initial positions of the q atoms are set up in an equal-spacing array 

xi(0) = iP-+ e, i = 1 , 2  ..... q (8) 
q 
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where the phase c~, a constant throughout the system, satisfies 

mi ~< 2(ico + c~) ~< mi + 1 (9) 

Here mi is the integral part of 2xi: 

mi = [2x,] (1o) 

Let the system evolve in time according to the q differential equations 

d x  i 
~ -  = f~., i =  1, 2,..., q (11) 

where f,. is the force acting on the ith atom 

OY: 
f , -  c3x~ 

l k 
= _ [e-~(x,-x,_,) e-~{~.,-x,.)] _ ~ sin 2rcxi, 

P 
i =  1, 2,..., q (12) 

This evolution relaxes the system toward the ground state under the 
influence of the restoring forces. It has been s h o w n  (11'13) that the resulting 
configuration is always a ground state if the initial configuration is given 
by (8). A periodic condition (14) must be satisfied in Eqs. (11) and (12) to 
ensure periodic orbits 

X 0 = X q  - -  p 

X q + l = x l + p  

The differential equations (11) can then be rewritten as 

(13) 

dxl 1 k 
Ee ~(~-~+P) e -~ (xz -~z ) ] - '~  sin27zxl 

dt fi 2re 

k dx 2 =-1 [e_/3(~ 2 _~3_ e-~(~3--~23] ~ sin 27CX 2 
dt fl 

dxq_~ 1 [e_~(x~ ,_~,2)  e_/~(~ ~ -~ 1)] k 
= -- -- ~nn sin 2rCXq i dt /~ 

_ k d x q _ l  [e_~(:Vq_~q_~) g /~(xm_xq_l+p)]_~_~sin27zx q 
dt t~ 

(]4) 
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These equations can be solved by the standard Runge-Kutta method. 
When the ground state is reached, the force on each atom should vanish. 
In practice, the ground state can be considered found if all dx i /d t  become 
less than a given prescribed value. 

For very small values of k, the ground state is the only metastable 
configuration satisfying the stationary condition 0~r (11) In our 
calculations, for a given co, we started with k ~ 0, which guarantees a 
ground-state configuration. Then we use this configuration for the calcula- 
tion of the next ground state with a small increment in k. At the same time 
we monitored the changes in the residue (see Section 4) to ensure that the 
configurations calculated stay in the minimum. If the configuration moves 
to a metastable state as a consequence of a small increase in k, then the 
residue will show a discontinuous jump from the previous value. 

This method works well, but there is a practical problem. When look- 
ing for a high-period ground state, one has to integrate a large number 
(e.g., q=4181)  of differential equations simultaneously. It takes a large 
amount of computer time. Yet in fact, only the final configuration where all 
forces vanish is what we want. All the evolution steps before a ground state 
is reached are unnecessarily wasted. S c h e l l n h u b e r e t a l .  (15~ suggested a 
Newton's method which searches directly for the solutions of f i - -0 .  The 
superconvergence of Newton's method greatly reduces the computing time. 
Since many force functions are nonmonotonic, an extremely good guess of 
the correct initial condition is required in order that the method can be 
successfully applied. The initial condition (8) is not a good choice since 
very often it will converge to a physically unstable configuration for large 
k values. Schellnhuber et al. gave an optimal initial configuration for a 
cosine external potential such as the one we are studying: 

x~(O) = Up~q] (15) 

where [. ] stands for the integral part. The basic idea of this method is to 
put the atoms initially in the valleys of the potential. The system will then 
be trapped with certainty in the ground state before reaching a non- 
minimizing periodic orbit. 

We compared some ground-state configurations obtained by Newton's 
method with the ones obtained by the differential equation method. They 
gave the same results, but the former method is much faster. However, 
caution should be exercised when applying Newton's method for other 
systems, since there is no guarantee that it will always result in the ground 
state. More complex situations have been demonstrated by Schellnhuber 
et al. (15) that a 3-harmonic external potential variant of the standard FK 
model also supports metastable Cantorus configurations (T-type ground 
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states). In the Toda model, numerical calculations of ground states showed 
that only the conventional on-the-bottom configurations (B-configurations) 
are possible. 

2.2. Phase Diagram 

The phase diagram consists of commensurate and incommensurate 
ground states in the parameter space of k and #. For any given rational 
winding number co, there is a corresponding commensurate area (Arnold's 
tongue) in which co is constant. Between any two tongues there is a gap 
which contains incommensurate states as well as higher-order commen- 
surate states. 

The Farey tree construction (16'17) can be used to study the phase 
diagram from low to high orders. There are 2" 1+ 1 rationals (hence 
tongues) in the nth Farey generation in the interval [0, 1]. The most 
effective way to construct a phase diagram is to locate the boundaries 
of commensurate states. For a given commensurate state co = p/q, its left 
boundary is determined by equating the energy of that tongue to the 
energy of an incommensurate state 05 in the immediate left neighborhood 
of the tongue. Since they have the same k and # and 05 is infinitely close 
to co, their energy should also be infinitely close. In practical calculations, 
the incommensurate 05 is approximated by a left neighboring tongue 
05 --/5/~ of a much higher order, i.e., c] >> q. The higher the order, the better 
the approximation. We found that using 05 six orders higher than co gives 
very good accuracy. The right boundary is determined in a similar way. 

We divide the energy (5) into two parts: (14) the lock-in energy Elock 
and the elastic energy E~I: 

~f~=~ I ly e-~(X'+l-~i)+ k-~(2~) 2 ( 1 -  cos 27zxi) ] 

-~ ~o~k(fl; CO, k) + ~el(fi; co, #) (16) 
where 

and 

~[  1 e-~'~+~ *~ k ] ~lock(/~; (J), k)-~-. ~-~ -'~- (-~)2 ( 1 -- COS 2T['X i) (17) 

~V 
~e~(fl; CO, / ~ ) = ~ e  ~[//(co -- /0 -- 1] (18) 

The N in Eq. (18) is the total number of atoms in the system. The lock-in 
energy ~ock depends on the local atomic configurations {xi}, and on co 
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and k, but  not  on the pa ramete r  /~. The elastic energy gt~l, on the other 
hand,  does not  depend on the local properties,  but  only on the global 
propert ies  of the system, o) and #. A bounda ry  ktB of a commensura te  
co = p / q  at  a given k is determined by the equat ion  

~ ( /~ ;  co, k,/~e) = af ( f l ;  c5, k, #8) (19) 

where (5 =/5 /0  is the winding number  of the neighboring tongue of a higher 
order. Using Eqs. (16)-(18),  we can rewrite Eq. (19) to express #8 
explicitly: 

1 e S - ~  ],lB~ln[flEhlock(fl;(D,k)_hlock(fl;(~),k)] 1 ( 2 0 )  

where hlock(fl; O, k) is the average lock-in energy per a t o m  

1 
hlock(fl; O, k) = ~ ~lock(fl; O, k) 

= -  e -e<x'+~ x') + ,~--~,~ (1 -- cos 2zcxi) (21) 
q i = l  

We have used the expressions (20) and (21) to calculate the phase 
d iagrams of the model  (5) for different fl values (Fig. 2). Figure 2a is the 
phase d iagram at fl = 0.002, which is used as a test of the/3  ~ 0 limit. We 
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can see that this phase diagram is almost the same as that of the standard 
FK model. It is symmetric about /~ = 1/2. When /~ is nonzero, the phase 
diagram becomes asymmetric (Figs. 2b and 2c), reflecting the nonlinear 
nature of the Toda interaction. The tongues all swing to the left. The 
tongues with/~ > 1/2 are bent more than the tongues with/~ < 1/2, and their 
areas are also reduced. The rightmost tongue, ~o = 1/1, becomes larger. So 
in our model, the small-/~ part of the phase diagram remains a standard 
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FK type, while in the large-# part of the diagram, the ~ values are smaller 
compared to the standard FK model for the same stable commensurate 
states. As a result, the unity misfit occupies a large area in the phase 
diagram. For  a system in which p represents the pressure, (2'18) if the inter- 
atomic interaction is of the Toda type, then the commensurate states will 
occur at a lower pressure than those whose interaction is of the Hooke 
type. As /~ increases, the interaction weakens and this effect becomes 
greater (Figs. 1, 2b, and 2c). 

3. DEVIL'S STAIRCASE, f (o)  AND Dq 

It has been shown (18"19) that on or above the critical value kc, the fre- 
quency ratio co as a function of the parameter/~ forms a complete devil's 
staircase (DS) as shown in Fig. 3. This function contains only steps, each 
of them representing a stable commensurate state. Magnification of any 
part of the curve (not within a step) will reproduce the original curve. We 
study the devil's staircase at the critical golden mean value kc(coa). The 
devil's staircase in Fig. 3 shows the influence of the Toda interaction: com- 
pared to the staircase of the standard FK model, the steps move to the left 
and get narrower as 13 increases. The only exception is the 1/1 step, which 
gets wider. The complementary set of a complete devil's staircase, namely 
the gaps between steps, is a fractal with zero measure. By defining a fractal 
measure on the fractal, we can study its multifractal properties. Consider a 
complete devil's staircase of the nth Farey generation. The corresponding 
complementary set of this staircase has 2 " -  1 pieces (gaps) in the interval 
[0, 1]. Denote by ei the width of the ith piece, and by m i the fractal 
measure (14) defined to be the difference of the winding numbers of two 
neighboring steps: 

mimcoi+I--coi, i = 1, 2 ..... 2 n-1 (22) 

Thus m~ satisfies the normalization condition 

Z mi = 1 (23) 
i 

The partition function ~2~ of this multifractal in the nth Farey generation is 
then 

2n 1 DI ~1 

V~")(q, z ) =  ~ ~ (24) 
i = l  i 

The function r(q) can be obtained by equating (24) to a finite constant C. 
We choose C = 1. Then r(q) is defined by 

2 n I mq 
E 1 (25) 

i = 1  
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~(q) is defined to be the derivative of t(q), 

Hence 

d 
~(q) = -7- ~(q) (26) 

aq 

i ~ - ~  In (27) ~(q)= Y'~ln ~i 
�9 i ~ i  i ~ i  

The singularity spectrum f (a )  and the generalized dimension Dq c a n  then 
be calculated: 

f ( ~ )  = q~(q) - t (q )  (28) 

v(q) 
Dq = (29) 

q - 1  

We have calculated f ( e )  and Dq of the devil's staircase for different fl 
values. The numerical results are shown in Figs. 4 and 5. The singularity 
spectrum f ( a )  shows its dependence on the parameter ft. It becomes higher 
as fi increases. This is due to the fact that the devil's steps decrease as fl 
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increases, causing the fractal dimension of the fractal support to increase. 
The endpoints of the curve, ~min and ~max (corresponding to q ~ +oo and 
q ~ -0% respectively), also expand as /3 increases: 0~mi n smaller and emax 
larger. The peak of the curve, %, shifts to the right as/3 increases, making 
the large-c~ side of the curve steeper. In the limit /~--, o% f ( e )  will have a 
sawtooth shape, % = C~ma x. The change of the generalized dimension Dq 
with parameter ~ is shown in Fig. 5. A larger /~ gives a Dq curve with a 
higher kink. 

4. CRIT ICAL BEHAVIOR 

4.1. M a p  and Critical Point 

The equilibrium configuration of the Hamiltonian (5) can be expressed 
as a map. The equilibrium configuration of the atoms is achieved by the 
zero-force condition: 

8j~f 
8x--T=0 (30) 
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Define the conjugate variable y~, 

y i =  e fi(x~ x~_~) 

Then condition (30) can be written in terms of a map: 

Y~+ ~ = Ye - ~ sin 2~x~ 
ZT~ 

(31) 

(32) 

where 

1 - i l k  cos 2nxi~  

1 1 + k cos 2____~x~/ 

flYi+ 1 Yi+ 1 / 

(35) 

(36) 

I O / b  k <kc  
!im R~'(k) = k = kc (34b) 

k>k~.  

where a and b are positive constants less than unity. The residue R is 
defined via the Jacobian matrix M of the linearized map (32): 

1 
x i +  l = x i - - ~ l n  y i +  l 

When k is small, there are KAM curves in the (x, y) phase space. The last 
rotational KAM curve corresponding to the one with the golden mean 
winding number breaks up at k = kc, and the analytic KAM curve becomes 
a Cantorus. 

To study the critical behavior, we first have to locate the critical point 
kc. We will use Greene's residue criterion (21'22) to determine the critical 
point. Denote by Re(k)  and R~(k) the residues of the elliptic and hyper- 
bolic orbits with period qi. The rational approximation of the golden mean 
winding number is given by the convergents Pi/qi, 

o~G= lim P_!= lim - - F '  (33) 
i ~ o a q i  i~oo  F i +  1 

where the numbers F~ define a Fibionacci sequence Fi+ 1 = F~+ F~_ ~ with 
Fo = 1 and F1 = 1. The residue criterion states 

{ 0ao~ k < k c 
lim R~(k) = k = kc (34a) 
l ~ o o  

k > k c  
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For a q-orbit, M is given by 

q 

M =  1-I M, (37) 
i - - 1  

The residue R of that orbit is defined by (21) 

R = �88 - Tr M) (38) 

To calculate kc, we use the map combined with Newton's method 
to reduce the computing time. The symmetry lines greatly simplify the 
searching for periodic orbits in the (x, y) space. The map (32) has four 
symmetry lines: 

x = 0  

1 
X ~ -  

2 
(39) 

1 
x =  - ~-~ In y 

1 1 
x . . . .  l ny  

2 2fl 

It has been observed (2~'23) that for a q-orbit there are at least two out of 
its q points which lie on the symmetry lines. The search for a q-orbit is then 
limited to these four lines instead of the whole (x, y) space. 

We have calculated the k c values of the golden mean winding number 
co G for different fl values. Table I lists the numerical values of k c  .3 Also 

3 Some of the k C were p rov ided  by J. Shi. 

Table I. C r i t i c a l  P o i n t  k c w i t h  Winding 
Numbers 0~G and too for Various f l 

fl k~(~oG) k~(o~e) 

0.0 0.971635 0.971635 
0.002 0.970473 0.970842 

0.1 0.915184 0.933420 

1.0 0.534561 - -  

2.0 0.294788 0.437262 
5.0 0.0502393 - -  

10.0 0.00284025 - -  
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listed are kc(coe), where cog = 1 -cog  for some selected/3 values. At/3 = 0, 
which is the standard FK model, ke(coG)= k~(co~). But k~(co~) and k~(co~) 
become distinct as/3 r 0, and their difference increases as/3 increases. This 
reflects the asymmetry of the map (32). For the standard FK model, its 
map, the standard map, 

k 
Yi+ ~ = Yi + ~ sin 2rcxi 

X i +  1 ~ X i  -]- Y i +  1 

is invariant under the interchange of co and 1 - co, i.e., y --* 1 - y. The map 
(32) of the Toda interaction does not have this symmetry, due to the 
exponential form of the Toda interaction (logarithm term in the map). As 
a result, the kc values for cog and co~ become unequal. However, we will 
see in the next section that the critical exponents at kc(coa) and kr are 
nevertheless identical. 

4.2. Critical Exponents 

At the critical point k = k  c, there is a transition by breaking of 
analyticity. (n) The full function describing the incommensurate structure 
undergoes a transition from an analytic function to a discontinuous 
function. Many physical quantities (n) also undergo a transition at kc. 
We will study their critical behavior in our model. 

First consider the gap in the phonon spectrum f2 G. Consider a small 
vibration of the atoms around their equilibrium positions {xi}, 

xi( t )  = xi + ai(t) (40) 

The equation of motion for this vibration is described by 

daxi(t)  0~({x i ( t )} )  (41) 
dt 2 gxi(t)  

Since the equilibrium positions {x~} are determined by the condition 

c3)ff({x~(t) }) = 0  (42) 
axe(t) xi~o=x, 

the linearized equation of motion for small vibrations is given by 

~2~;~({x'(t)}) 6 (t" (43) 
62, ( t )+• ,  ~--x/.(tT0x~.(t) j ,  )=0 ,  i = 1 , 2  ..... q 
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where 2 = d2x/dt 2 and 

I - -e  -B(xi+l- xi), j =  i+  1 

~2~-~ e-t~()'+~-~')+e ~(~, :~-~)+kcos2zcxi, j = i  
OxiOxj ~_e_~(~_x~_~l ' j = i - 1  

(44) 

A time Fourier transform of Eq. (43) gives 

- e  ~(x, x,_~)ei ~ + [e-~(x,+,-x,) + e-~(~, .~, ~) + k cos 2zrx~- ~ 2 ]  Gi 

- -  e ' ( ~ ' + ~ - ~ ' ) e i +  1 = 0 ,  i = 1, 2 , . . . ,  q ( 4 5 )  

Define two functions D(x~+l, xi, x~ 1) and N(xi, x~ l): 

D(xi+x,X~,Xe_l)=e-~(~+~-x~-~)+e ~(~'- ~'-~ + k cos 2~x~ (46) 

N(xi, xi 1)= - e  ~(~ X~_l~ (47) 

Then the eigenvalue equation (45) can be written as 

ID(x2, Xa, Xo) - ~ 2  N(x2, xl) 0 ... N(xl, Xo) \ 

N(x2 ' Xl ) D(x3 ' X2 ' Xl ) __ Q2 N(X3, x2) 0 ) o N(x3, x2) D(x4 ' x3 ' x2 ) _ ~2  0 = 0 

\ N(xq+l,Xq) 0 0 D(Xq.i,Xq, X q 1 ) - ~  2 

(48) 

with the periodic boundary condition (13). 
The phonon spectrum {f2i} is obtained by solving this q x q matrix 

equation. The gap in the phonon spectrum f2a is defined to be the lowest 
phonon frequency in the system, s For  k < k , ,  the ground 
state of the chain is in a sliding mode and the atomic positions can be 
described by a hull function (18) h 

x,= h(ico + cO= ico + c~ + g(ico + a) (49) 

where ~ is an arbitrary phase, g is a continuous periodic function with the 
same period as the external potential. Since the hull function is analytic for 
k<kc ,  we can substitute Eq. (49) for xi in Eq. (42) and differentiate 
Eq. (42) with respect to the phase cr 

-e-fl(xi xi-Dhl- 1 q- [ e-#(x'+~-x') + e pc~,-x, 1)+ k cos 2~zxi] h; 

- e -#(x,+~- X,~h,i+ 1 = O, i = 1, 2 ..... q (50) 
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where h; = (8/0e) h(ico + cO. The Fourier transform of (50) shows that h;(co) 
is a solution of Eq. (45) with s = 0. Therefore s = 0 for k < kc. As k > k~, 
a gap s in the phonon spectrum appears and the critical behavior of s 
can be characterized by the exponent (m Z 

f2a(k  ) ~ ( k -  kc) z (51) 

We have calculated X for various//values,  from/~ = 0.002 up to/~ = 10. 
Despite the fact that kc increases more than two orders in this/~ range and 
the phase diagram changes greatly, Z remains unchanged. Our numerical 
estimate of Z is 

z = l . 0 2 •  (52) 

The X value for coc is found to be the same as that for co G. We next study 
the critical behavior of the correlation length. 

The correlation length ~ measures the distance over which a perturba- 
tion fix~ propagates along the chain. An infinitesimal displacement fix~ at x~ 
will cause a displacement cSxj at x j, where 

6Xj ~ exp( - l  J -  il/~) 6x, (53) 

The relation (53) defines the correlation length of the ground state. It can 
be shown (11) that ~ is the inverse of the Lyapunov exponent 7, 

1 
= - (54) 

Y 

and y thus share the same critical exponent v. We will use y to calculate 
the exponent v. The Lyapunov exponent can be calculated from the 
eigenvalue of the Jacobian matrix M, (37): 

7 = lim -1 In 12th (55)  
q~oo q 

where IAl[ is the modulus of the larger eigenvalue of M, and q is the period 
of the orbit. The eigenvalue 2 of the matrix M can be expressed in terms 
of its trace Tr M, 

2_+=~ r M  + - (56) 

In the sliding mode k < k~, ~ ~ oo since the chain can slide freely under 
an infinitesimal displacing force. For  k > kc, the atoms are locked, ~ is 
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therefore finite, and so is 7- The critical exponent v describes the critical 
behavior of ?: 

?(k) ~ (k - kc) v (57) 

As in the case of Z, the values of v for various /~ are all the same. We 
calculated v for/~ from 0.002 to 10, and found no appreciable difference. 
Also, the value of v at kc.(cov) is the same as that at kc(co~): 

v = 0.99 + 0.01 (58) 

The Peier ls-Nabarro (PN) barrier of the ground state is defined to be 
the minimal energy barrier that must be overcome to continuously trans- 
late the chain of atoms on the external potential. For  k < k c ,  the PN 
barrier EpN vanishes since no extra energy is needed to shift the chain in 
this sliding mode. For  k > k c, the ground state is described by a discon- 
tinuous hull function which in the (x, y) phase space is represented by a 
Cantor set. A minimizing periodic orbit {(Yi, xi)}~=~ can be used to 
approximate this Cantor  set. (2a) The PN barrier EpN is the energy dif- 
ference between the minimizing orbit and its companion minimax orbit, 

EpN = Emax(co ) -- Emin(co ) (59) 

where Emax(co) [Emin(co)] is the energy of the minimax (minimizing) orbit 
of winding number  co. The critical behavior of EpN obeys the following 
power law: 

EpN ,-~ (k - kc)* (60) 

The critical exponent ~ is found to be 

= 3.00 + 0.02 (61) 

for all fi values we have calculated, ~ is also the same for kc(coo) and 
k~(6)6). The scaling law observed in ref. 11 also holds in the FK model with 
Toda  interactions 

0 = 2X + v (62) 

Since all the critical exponents we have calculated are the same for the 
standard FK model and the FK model with Toda interactions, these two 
models belong to the same universality class in the conventional sense. 

Recently, MacKay  {25) used the renormalization theory to study the 
critical exponents and the scaling law. He predicted that the scaling law 
(62) should be corrected as 

~, + r/' = 2 X +  v (63) 
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where r/' is the critical exponent for the effective mass m*, 

m*(k)  ~ ( k - k c )  -~' (64) 

with the estimated value (19) t / '~  0.029. The effective mass m* results from 
the dynamical problem 

aS(xi(t)) 
mo2i(t  ) = (65) 

axi(0 

The kinetic energy per atom is (1/2)m*v 2 for small v, where the effective 
mass m* is given by 

m* = mo fs g'2(s) ds (66) 

g(s) in Eq. (66) is an adiabatic solution of Eq. (65), 

xi( t )  = g(x o + vt + ico) (67) 

5. C O N C L U S I O N S  A N D  D I S C U S S I O N S  

We have studied a strongly nonlinear system: the FK model with 
Toda interactions. With an adjustable nonlinearity parameter fl, this model 
covers various types of systems: from the standard FK model as /?--* 0, 
with stronger anharmonic interaction as/? increases, to the hard-rod model 
as fl --* oo. A number of new features appear due to the exponential form 
of the Toda interaction. The phase diagram becomes asymmetric when 
fl ~ 0, which reflects the breaking of reflection symmetry presented in the 
standard F K model. This asymmetry increases with/?. The singularity spec- 
trum f (~)  and the generalized dimension Dq also show their dependence 
on/~. In particular, the fractal dimension of the support increases as /? 
increases. In the hard-rod limit, f(c0 has a sawtooth shape. This shows that 
the multifractal feature of the Toda model is different from that of the 
standard FK model. The Toda interaction also destroys the symmetry of 
~o ~ 1 - co in the map of the standard FK model. As a result, the critical 
kc values at cog and coG= 1 -  coa are distinct and they are functions of/?. 

To answer the question of whether the critical exponents of the trans- 
ition by breaking of analyticity in an anharmonic FK model are different 
from those of the  standard FK model, we have calculated the critical 
exponents of the gap in the phonon spectrum, the correlation length, and 
the Peierls-Nabarro barrier at k~(o)a) and kc(co~) with different /? values. 
Contrary to the multifractal properties, these critical exponents are the 
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same in the two systems. On the other hand, the critical exponents are 
found to be different for external potentials different from the standard 
cosine. (26'27~ These results seem to suggest that different interatomic interac- 
tions lead to the same critical exponents, while different external potentials 
lead to different critical exponents. 

In our calculations o f f ( e )  and the critical exponents, kc(coa) was used 
as the critical point. While kc(coa) is indeed the largest kc(co) in the 
standard FK model (corresponding to the standard map), it is not the case 
for Toda interactions. As we have seen, kc(co~) is greater than kc(coa) for 
nonzero /~, and the difference increases with/3. Yet kc(coa) is still not 
necessarily the largest kc(co ). In principle, one needs to calculate kc for 
every gap coj involved to get a critical line kc(e)i). Using a single kc(coc) to 
approximate the critical line may affect the devil's staircase and therefore 
the f(c~) spectrum. However, the critical exponents do not seem to be 
affected by this approximation. 
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